Development of a 6-Degrees-of-Freedom Hybrid Interface Intended for Teleoperated Robotic Cervical Spine Surgery - École Nationale Supérieure de Mécanique et d’Aérotechnique
Article Dans Une Revue Journal of Mechanisms and Robotics Année : 2025

Development of a 6-Degrees-of-Freedom Hybrid Interface Intended for Teleoperated Robotic Cervical Spine Surgery

Résumé

This article deals with the development of a 6-degrees-of-freedom (DoF) hybrid interface for a teleoperated robotic platform intended to assist surgeons in cervical spine surgery. The targeted task is the drilling of cervical vertebrae for the attachment of spinal implants. Given the complex anatomy of the cervical region, with the proximity of the spinal cord and vertebral arteries, high accuracy in the drilling procedure is required to avoid complications for the patient. In this context, the proposed hybrid interface has been designed to meet the requirements of the drilling task, in terms of degrees of freedom, workspace, and force feedback, which have been identified through a literature review. It consists of an association of two parallel mechanisms and a centrally located serial mechanism. Direct and inverse kinematic modeling of each mechanism and one of the complete interfaces were carried out. A study of the dexterity distribution of the parallel mechanisms was carried out to select the suitable interface working mode that would keep the singularities away from the prescribed workspace. In addition, the force feedback was implemented in static mode, neglecting in the first time the weight of the system. The interface design parameters were then optimized to avoid singularities within the prescribed workspace, to minimize motor torques, and to reduce the size of the interface. These development stages led to the design of a motorized prototype of the hybrid interface.
Fichier principal
Vignette du fichier
Article_JMR_Alizée_HAL.pdf (1.49 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04717595 , version 1 (02-10-2024)

Identifiants

Citer

Alizée Koszulinski, Juan Sandoval, Marc Arsicault, Med Amine Laribi. Development of a 6-Degrees-of-Freedom Hybrid Interface Intended for Teleoperated Robotic Cervical Spine Surgery. Journal of Mechanisms and Robotics, 2025, 17 (2), pp.021007. ⟨10.1115/1.4065917⟩. ⟨hal-04717595⟩
300 Consultations
22 Téléchargements

Altmetric

Partager

More